FREE SHIPPING on orders of $50 or more

Screen Printing Ink

Applications:

Screen printing is arguably the most versatile of all printing processes. It can be used to print on a wide variety of substrates, including paper, paperboard, plastics, glass, metals, fabrics, and many other materials. including paper, plastics, glass, metals, nylon and cotton. Some common products from the screen printing industry include posters, labels, decals, signage, and all types of textiles and electronic circuit boardss. The advantage of screenprinting over other print processes is that the press can print on substrates of any shape, thickness and size.

A significant characteristic of screen printing is that a greater thickness of the ink can be applied to the substrate than is possible with other printing techniques. This allows for some very interesting effects that are not possible using other printing methods. Because of the simplicity of the application process, a wider range of inks and dyes are available for use in screen printing than for use in any other printing process.

Utilization of screenprinting presses has begun to increase because production rates have improved. This has been a result of the development of the automated and rotary screenprinting press, improved dryers, and U.V. curable ink. The major chemicals used include screen emulsions, inks, and solvents, surfactants, caustics and oxidizers used in screen reclamation. The inks used vary dramatically in their formulations (GATF 1992b).

Screen Printing Process Overview

Screen printing consists of three elements: the screen which is the image carrier; the squeegee; and ink. The screen printing process uses a porous mesh stretched tightly over a frame made of wood or metal. Proper tension is essential to accurate color registration. The mesh is made of porous fabric or stainless steel mesh. A stencil is produced on the screen either manually or photochemically. The stencil defines the image to be printed in other printing technologies this would be referred to as the image plate.

Screen printing ink is applied to the substrate by placing the screen over the material. Ink with a paint-like consistency is placed onto the top of the screen. Ink is then forced through the fine mesh openings using a squeegee that is drawn across the scree, applying pressure thereby forcing the ink through the open areas of the screen. Ink will pass through only in areas where no stencil is applied, thus forming an image on the printing substrate. The diameter of the threads and the thread count of the mesh will determine how much ink is deposited onto the substrates.

Many factors such as composition, size and form, angle, pressure, and speed of the blade (squeegee) determine the quality of the impression made by the squeegee. At one time most blades were made from rubber which, however, is prone to wear and edge nicks and has a tendency to warp and distort. While blades continue to be made from rubbers such as neoprene, most are now made from polyurethane which can produce as many as 25,000 impressions without significant degradation of the image.

If the item was printed on a manual or automatic screen press the printed product will be placed on a conveyor belt which carries the item into the drying oven or through the UV curing system. Rotary screen presses feed the material through the drying or curing system automatically. Air drying of certain inks, though rare in the industry, is still sometimes utilized.

The rate of screen printing production was once dictated by the drying rate of the screen print inks. Do to improvements and innovations the production rate has greatly increased. Some specific innovations which affected the production rate and has also increased screen press popularity include:

  • Development of automatic presses versus hand operated presses which have comparatively slow production times
  • Improved drying systems which significantly improves production rate
  • Development and improvement of U.V. curable ink technologies
  • Development of the rotary screen press which allows continuous operation of the press. This is one of the more recent technology developments

Screen Preparation

Screen (or image transfer) preparation includes a number of steps. First the customer provides the screen printer with objects, photographs, text, ideas, or concepts of what they wish to have printed. The printer must then transfer a "picture" of the artwork (also called "copy") to be printed into an "image" (a picture on film) which can then be processed and eventually used to prepare the screen stencil.

Once the artwork is transferred to a positive image that will be chemically processed onto the screen fabric (applying the emulsion or stencil) and eventually mounted onto a screen frame that is then attached to the printing press and production begins.

Screen Printing Presses

There are three types of screen printing presses. The flat-bed (probably the most widely used), cylinder, and rotary.

Flat-bed and Cylinder Presses

Flat-bed and cylinder presses are similar in that both use a flat screen and a three step reciprocating process to perform the printing operation. The screen is first moved into position over the substrate, the squeegee is then pressed against the mesh and drawn over the image area, and then the screen is lifted away from the substrate to complete the process. With a flat-bed press the substrate to be printed is positioned on a horizontal print bed that is parallel to the screen. With a cylinder press the substrate is mounted on a cylinder (Field and Buonicore).

Rotary Screen Presses

Rotary screen presses are designed for continuous, high speed web printing. The screens used on rotary screen presses are seamless thin metal cylinders. The open-ended cylinders are capped at both ends and fitted into blocks at the side of the press. During printing, ink is pumped into one end of the cylinder so that a fresh supply is constantly maintained. The squeegee is a free floating steel bar inside the cylinder and squeegee pressure is maintained and adjusted by magnets mounted under the press bed. Rotary screen presses are most often used for printing textiles, wallpaper, and other products requiring unbroken continuous patterns.

Until relatively recently all screen printing presses were manually operated. Now, however, most commercial and industrial screen printing is done on single and multicolor automated presses.

Screen Reclamation (post press)

Why reclaim screens?

Polyester fabric costs $10-40 per square yard.

Failure to reclaim screens and ruined screens cost on average $5,000-$10,000 per year. The average monthly fabric cost $360. One study showed chemical reclamation cost between 2 and 10 dollars per average screen, while screen disposal cost just shy of 50 dollars.

The process of reclaiming screens generates solvent waste and waste water. Solvent waste generated from screen cleaning and waste water is generated through the process of emulsion removal. The waste water will contain particulates comprised of ink pigment, emulsion and emulsion remover (periodate).

Reclaiming screens involves 2 to 3 steps.

1. Remove the ink:

Any and all excess ink in the screen should be "carded off" for reuse on another job. The screen must then be washed to remove any remaining ink because the ink will interfere with the process of removing the stencil. Screen cleaning solvents are a source of VOC emissions.

2. Emulsion removal:

The stencil or emulsion is removed by spraying the screen with a solution of water and emulsion remover chemicals which is comprised mainly of sodium metaperiodate. Then rinsing the solution away with fresh water.

The emulsion remover solution should not be permitted to dry on the surface of the screen. The emulsion and remover will become virtually impossible to remove if allowed to dry. Repeated rinsing will result in excess waste water that must be disposed of as a regulated waste and will not significantly improve the situation.

3. Haze or ghost image removal:

Finally, if any haze or "ghost image" remains, a haze remover must be applied. Some haze remover products are caustic and can damage or weaken the screen. Haze removers make screens brittle and tear easily, therefore only small amounts should be used. Ghost image is a shadow of the original image that remains on the screen caused by ink or stencil caught in the threads of the screen.

Screen Printing Inks

Screen printing inks are moderately viscous inks which exhibit different properties when compared to other printing inks such as offset, gravure and flexographic inks though they have similar basic compositions (pigments, solvent carrier, toners, and emulsifiers). There are five different types of screen ink to include solvent, water, and solvent plastisol, water plastisol, and UV curable.

UV Curable

UV curable inks consist of liquid prepolymers, monomers, and initiators which upon being exposed to large doses of U.V. Radiation instantly polymerize the vehicle to a dry, tough thermosetting resin. They also require less energy, overall, to dry or "cure" compared to gas or electric driers.

The down side of UV inks is they can cost as much as three times that of regular inks and must be handled differently than conventional inks due to safety issues. Additionally, solvents are required for clean-up which results in some VOC emissions.

Plastisol Inks

Plastisol inks (both solvent and water based) are used in textile screen printing.

Solvent Inks & Water Inks

Solvent and water based screen printing inks are formulated with primarily solvent or water. The solvent evaporates and results in VOC emissions. Water based inks, though they contain significantly less, may still emit VOC’s from small amounts of solvent and other additives blended into the ink. The liquid waste material may also be considered hazardous waste.

Reprinted with permission from pneac.org/.